Biological Hydrogen Production

New technology from researchers at the Wyss Institute for Biologically Inspired Engineering at Harvard University greatly improves the efficiency with which hydrogen can be produced in one type of microbe — potentially bringing biological production of this clean fuel source one step closer to economic feasibility. Their discovery, the findings for which appear in the Proceedings of the National Academy of Sciences, resulted in a 500-fold increase in the amount of hydrogen produced in the bacterium used in this research.

For more than a decade, hydrogen has been touted as a clean alternative to fossil fuels because it releases a significant amount of energy relative to its weight and also produces nothing but water when it burns. It can also be produced cleanly, using biological methods, such as photosynthesis. However, the high costs incurred in production have proved too big an obstacle to allow for its wide-spread use.

BioHydGen

In this cross-section illustration of a cyanobacteria, incoming sunlight is captured and used to generate a cellular electron pool that researchers were able to tap to produce hydrogen.

Silver’s team, which included Wyss Institute postdoctoral fellow, Daniel Ducat, and Gairik Sachdeva of Harvard’s School of Engineering and Applied Sciences, has made headway toward one such gain. They focused their attention on one possible — yet problematic — biological production method involving an enzyme known as hydrogenase.

Certain types of hydrogenase can produce a constant flow of hydrogen using only sunlight and water, but most cannot. The difference lies in the particular enzyme’s ability to tolerate oxygen. Most variations are so intolerant of oxygen that its presence will shut down hydrogen production process within a matter of minutes. Yet, creating a way to keep oxygen from entering the production environment would be both costly and impractical — issues that have effectively kept this method off the table.

The researchers developed a technology that could serve as a platform from which to engineer oxygen-tolerant enzymes. Their approach could help lead the way to a cost-effective process for producing significant amounts of hydrogen.

I think that it is great technology, although I am not sure if this technology can provide us with a high and steady flow of hydrogen. What do you think?

Source: http://wyss.harvard.edu/viewpage/238/

Advertisements
  1. 11/04/2013 at 14:38

    I think extracting the enzyme and making engineered controlled processes from it will be possible but I do not think it would be more efficient. Using the bacteria itself can be energy free but then the problem of a constant production rate will overrule because of the short reproduction rate of bacteria and the degeneracy. I do encourage the biological approach of such things. A couple of years ago a friend of me was in the project ‘E.D. Frosti’ of the KU Leuven where they developed a bacteria that could freeze and thaw ice. They also participated a competition of the prestige american MIT university.

  2. michaeltijskens
    12/04/2013 at 11:01

    I agree that the big drawback of this project is the problem of a constant production rate!

  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: